
Predicting Cooperation with Learning Models

Drew Fudenberg Gustav Karreskog ∗

First posted version: October 21, 2020
This version: October 31, 2022

Abstract

We use simulations of a simple learning model to predict cooperation rates
in the experimental play of the indefinitely repeated prisoner’s dilemma. We
suppose that learning and the game parameters only influence play in the initial
round of each supergame, and that after these rounds play depends only on the
outcome of the previous round. We find that our model predicts out-of-sample
cooperation at least as well as models with more parameters and harder-to-
interpret machine learning algorithms. Our results let us predict the effect of
session length and help explain past findings on the role of strategic uncertainty.
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1 Introduction

Determining when and how people overcome short-run incentives to behave coop-
eratively is a key issue in the social sciences. The theory of repeated games has
determined which factors allow cooperation as an equilibrium outcome, but since
these games typically also have equilibria where people do not cooperate, equilibrium
theory on its own is not a useful way of making predictions about cooperation rates.
Moreover, the assumption that people play the most cooperative equilibrium possible,
which is often used in applications, is a very poor fit for observed behavior in the
laboratory. It is therefore important both for policy decisions and the development
of more useful theories to have a better understanding of how cooperation rates in
experimental play of repeated games depend on their parameters.

To that end, we treat the relation between the average cooperation rate in the
experimental play of the prisoner’s dilemma and its exogenous parameters as a predic-
tion problem. That is, in contrast to past work, which has tried to match observed
behavior in-sample by, e.g., conditioning on initial play or the entire sequence of previ-
ous actions, we try to predict the average cooperation in a session without using any
data about how people in the session actually played. Studying predictions rather than
in-sample fit helps us identify aspects of behavior that are stable across experiments
and significant determinants of behavior. And studying average cooperation rates lets
us also study aggregate payoffs, since the outcomes in most rounds of most of these
experiments are symmetric: Either both players cooperate or they both defect.

To make our predictions, we estimate a very simple model of reinforcement learning,
where all that varies with treatment or personal experience is the probability of
cooperating in the first round of a new match. After these initial rounds, play depends
only on the outcome of the previous round: If both players cooperated, they keep
cooperating, if they both defected, they keep defecting, and if they mismatch, i.e., one
player cooperated and one defected, they both cooperate with roughly 1/3 probability.
Of course, actual behavior is much more complicated than our model supposes, and
exhibits many individual-specific effects. However, our goal here is not to identify all
aspects that sometimes matter, and include them in a model. Such a model would
be difficult to interpret, and could only be estimated with orders of magnitude more
data than is currently available.

In our learning model, the way that people play in the first round of their very
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first supergame depends on a composite parameter ∆RD that is intended to capture
the effect of strategic uncertainty. This parameter is defined as the difference between
the actual discount factor of the game and the discount factor that makes players
indifferent between the strategies Grim and Always Defect on the assumption that
everyone in the population uses one of these strategies, and moreover, that exactly
half of the population uses each one. (This is not meant as a realistic assumption, but
is simply one explanation of how ∆RD is defined.) Past work (discussed in Section 3)
has found that ∆RD is correlated with cooperation rates, and it plays an important
role in our model as well.

The second key component of our model is that agents learn from experience, and
specifically that initial-round play after the first supergame depends on the overall
payoffs the player received in past supergames for each initial-round action. The
direct effect of the game parameters on these payoffs is only partially captured by
∆RD, so the predicted overall cooperation rates also depend on the individual game
parameters.

We do not have a closed-form solution for the cooperation rates that our learning
model generates as a function of the game parameters and model parameters. Therefore,
to calibrate the model’s parameters, we first select a training set from the actual data.
We then simulate play on a wide range of model parameters, and select the parameters
where the simulated time path of the cooperation rates minimizes the mean squared
error (MSE) with respect to the time paths in the training set. Importantly, these
simulations do not use any aspects of the actual data, such as the initial actions played
at the start of a match or the payoffs the players received. We then use the calibrated
learning model to make predictions for average cooperation rates and the time-path of
cooperation on a test set of data. We use cross-validation, i.e., we repeatedly split the
data into training sets and test sets to estimate the out-of-sample prediction errors
and thus the model’s performance.

Using data from the 103 experimental sessions gathered in Dal Bó and Fréchette,
2018 as well as 58 sessions in papers published since then, we find that the learning
model predicts both average cooperation and the time path of cooperation in a
session at least as well as any of the model-free methods we consider, and better
than alternative learning models based on pure strategies. Moreover, we find that
allowing for heterogeneous agents, or a more complex learning model with learning
at all memory-1 histories, gives no noticeable improvements. We then consider the
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more challenging problem of predicting behavior in treatments different from those
the model is estimated on. Here all the prediction methods perform less well, but our
learning model does better than any of the model-free methods.

The learning model also lets us predict what would happen in longer experimental
sessions than are typical in the lab. As a first step, we use data from the first halves
of some laboratory sessions to predict cooperation rates in the second halves of other
sessions, and find that our model has significantly better outsample predictions than
OLS on ∆RD, Lasso, support vector regression (SVR), or a gradient boosting tree
(GBT). We then use the model to simulate cooperation rates in extremely long sessions.
We find that, as expected, cooperation rates are low when ∆RD is negative and that
cooperation rates are high when ∆RD is large. However, for intermediate values of
∆RD there is substantial cross-session variability in cooperation even in the long run:
Even after 10,000 supergames, the 90% interval goes from 0% to 79%.

As we detail in Section 3, past work has already found evidence that overall coop-
eration rates depend on ∆RD. Our preliminary data analysis sharpens this conclusion:
cooperation tends to increase over the course of a session when ∆RD > 0.15, and to
decrease when ∆RD < 0. Our learning model predicts this pattern, which suggests that
the reason for the observed impact of the composite parameter ∆RD is its effect on
the reinforcement of cooperation in the initial round of each supergame. Furthermore,
our model predicts that the individual parameters matter in addition to the way their
effect on ∆RD. This helps explain why our learning model can make better predictions
than models using ∆RD alone.

Our model predicts that participants who use the same learning rule can encounter
different behavior by their partners because of their own randomization in the initial
rounds and the random matching of partners. This difference in outcomes can lead
participants with the same learning rule to behave very differently, and we argue that
ignoring this endogenous heterogeneity may lead to overestimates of how different
the participants are ex-ante. For example, our reinforcement learning model can
explain why a sizable number of participants consistently defect in treatments that
are very conducive to cooperation. Finally, our learning model replicates the empirical
regularity that there is more cross-session variation in average cooperation rates for
intermediate values of ∆RD. Among other things, this suggests caution in interpreting
experimental studies of prisoner’s dilemmas with parameters in this range that are
based on only a small number of sessions.
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2 Preliminaries

In the experiments we analyze, participants played a sequence of repeated prisoner’s
dilemma games with perfect monitoring.1 The game parameters were held fixed
within each session, so each participant only played one version of the repeated game.
The treatments all had randomly chosen partners and a random stopping time, so
the discount factor δ corresponds to the probability that the current repeated game
continues at the end of the current round. (We will refer to the “rounds” of a given
repeated game and call each repeated game a new “supergame.”)

We represent the prisoner’s dilemma with the following strategic form, where
g, l > 0 and g < l + 1. Here g measures the gain to defection when one’s opponent
cooperates, l measures the gain to defection when one’s opponent defects, and g < l+1
implies that the efficient outcome is (C,C).

C D
C 1, 1 −l, 1 + g
D 1 + g,−l 0, 0

Figure 1: The Prisoner’s Dilemma

Standard arguments show that “Cooperate every round” is the outcome of a
subgame-perfect equilibrium if and only if it is a subgame-perfect equilibrium (SPE)
for both players to use the strategy “Grim”: Play C in the first round and then play
C iff no one has ever played D in the past. This profile is a SPE iff

1 ≥ (1− δ)(1 + g) ⇐⇒ δ ≥ g/(1 + g) ≡ δSPE.

Note that the loss l incurred to (C,D) does not enter into this equation, because
the incentive constraints for equilibrium assume that each player is certain their
opponent uses their conjectured equilibrium strategy.

Applications of repeated games often assume that players will cooperate whenever
cooperation can be supported by an equilibrium,2 but this hypothesis has little
experimental support. Instead, the level of cooperation in repeated game experiments
can be better predicted by measures that reflect uncertainty about the opponents’

1There are many more experiments on this case than on the prisoner’s dilemma with implementa-
tion errors or imperfect monitoring.

2See e.g. Rotemberg and Saloner, 1986, Athey and Bagwell, 2001, and Harrington, 2017.
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play. In particular, our work uses the composite parameter

∆RD ≡ δ − δRD = δ − (g + l)/(1 + g + l)

that was suggested by Blonski, Ockenfels, and Spagnolo (2011).3

Inspired by previous work and descriptive evidence that we present in Section 4 and
Online Appendix A, we develop a very simple model that assumes all individuals use
memory-1 strategies, i.e. strategies that only condition on the immediately preceding
round of the same supergame, which takes on the value ∅ in the initial round and
otherwise is one of {CC,CD,DC,DD}. Moreover, we assume that strategies only
differ across treatments and supergames in how they play in the initial round of each
supergame.

We assume that the probability of cooperation pinitial
i (s) in the initial round of each

supergame s ∈ {1, 2, ...}, depends on the game parameters and the effect of individual
experience in previous supergames, ei(s), according to

pinitial
i (s) = 1

1 + exp (−(α + β ·∆RD + ei(s)))
. (1)

Thus initial-round behavior in the model is driven by two components: a direct effect
of game parameters, captured by the linear function α + β ·∆RD, and the effect of
reinforcement learning, captured by individual experience ei(s).4

To model learning, we suppose that after each supergame s ∈ {1, 2, ...}, ei(s) is
updated according to

ei(s) = λ · ai(s− 1) · Vi(s− 1) + ei(s− 1), (2)

where ai(s) = 1 if player i’s initial round action in supergame s was C and ai(s) = −1 if
player i’s initial round action wasD, Vi(s) is the total payoff received in that supergame,
λ determines the strength of the learning, and ei(1) = 0.5 Thus, reinforcement of

3Here δRD = (g + l)/(1 + g + l) is the discount factor that makes players indifferent between the
Grim strategy and “Always Defect” if they believe their assigns opponent’s strategy is a 50 − 50
randomization between Grim and Always Defect. Rand and Nowak (2013) regresses first-round
cooperation on ∆RD; Dal Bó and Fréchette (2011, 2018) instead uses the size of the basin of attraction
for AllD. We tried using that instead of ∆RD, but the results were slightly worse.

4The additive form of reinforcement is standard in the literature, see e.g. Erev and Roth (1998).
5The alternative specification where learning responds to the average payoff in a supergame

instead of the total does worse in-sample than our model’s cross-validated error, so we did not try
to evaluate its outsample performance. This suggests that learning between supergames is stronger
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cooperation or defection in the initial round depends on the resulting supergame
payoffs, while the direct influence of ∆RD is constant across supergames.

We assume that behavior at non-initial rounds follows a memory-1 mixed strategy
that is constant across individuals, treatments, and time. Let h ∈ {CC,DC,CD,DD}
denote a memory-1 history, and let σh be the probability of cooperation at one of these
histories. Following Breitmoser (2015), we assume these correspond to a “semi-grim”
strategy, i.e. that σCC > σDC = σCD > σDD. The evidence reviewed in Section 4
shows that this is a good approximation of our data. The interpretation of this mixed
strategy is not necessarily that participants are consciously randomizing their behavior
with these probabilities, and would say so if asked. Instead, they might be unsure
what to do as they play the game.

In total, our model has 6 parameters, (α, β, λ, σCC , σCD/DC , σDD). We call this
“IRL-SG” for “the initial-round learning with semi-grim strategies model.”

Importantly, to predict average cooperation, we use simulations that suppose all
participants use learning rules of the form (1) and (2) to determine the evolution of
each simulated participant’s experience and play. These simulations do not use any
data on the actual play or payoffs of participants; that data is used only to calibrate
the model parameters.

3 Prior Work

Blonski, Ockenfels, and Spagnolo (2011) assumes that play will always correspond
to an equilibrium of the repeated game, and that there is a functional form that
determines which equilibria are possible for each parameter configuration. It then
uses five axioms on this functional form6 to conclude all players will defect if ∆RD is
negative. Blonski and Spagnolo (2015) shows that the sign of ∆RD corresponds to
whether Grim is risk dominant in a 2x2 matrix game with the strategies Grim and
Always Defect, and refines the prediction that players will cooperate to a prediction of
which cooperative strategies the players will use. Chassang, 2010 shows that the risk-
dominance threshold characterizes the limits of equilibria of incomplete-information
repeated games with an exit option. Because players know each other’s equilibrium

when the supergames are longer.
6The axioms include an additive separability condition and the requirement that g and l have

equal weight.
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strategies, and have the option of leaving a match early, the setting is rather different
than the one we study here.

On the empirical side, Blonski, Ockenfels, and Spagnolo (2011), Rand and Nowak
(2013), and Blonski and Spagnolo (2015) show that the average cooperation rates in a
session are increasing in ∆RD. Dal Bó and Fréchette (2018) shows that the sign of ∆RD

is much more correlated with high cooperation rates than is the sign of (δ − δSPE).7

These papers did not treat cooperation as a prediction problem.
Several papers estimate the strategies used by participants treatment by treatment

on the assumption that each participant uses a fixed strategy either in the entire
session or in the latter part of it. The papers that assume participants use pure
strategies consistently find that most of the behavior can be captured by the strategies
AllD (Always Defect), TFT (Play C in the initial round of a supergame, and thereafter
play the action your partner played in the previous round), Grim (Play C in the initial
round and thereafter play D if either partner has ever defected), and for lower values
of ∆RD, D-TFT (play D in the initial round and thereafter play what your partner
played in the previous round).8

More recent within-session studies find evidence for the use of “memory-1” mixed
strategies that depend only on the actions played in the previous round. Breitmoser,
2015 finds that semi-grim strategies fit play after the initial round better than pure
strategies do. Backhaus and Breitmoser, 2018 argues that a combination of AllD and
two types of semi-grim with the same non-initial play best fits behavior when the
mixtures of the types, as well as their play, is estimated treatment by treatment. In
Online Appendix E, we adapt our model to predict the next action played given the
history so far and find that it performs well. However, since this procedure requires use
of the data from the session being predicted, it cannot be used for our out-of-sample
prediction task.

Dal Bó, 2005 and subsequent work shows that behavior changes between the first
7Dal Bó and Fréchette (2011) find that cooperation is correlated with a different function of g, l

and δ, namely (1−δ)l
1−(1−δ)(1+g−l) . This is highly correlated with ∆RD, but when we used it instead we

obtained less accurate predictions.
8See for example Dal Bó and Fréchette, 2011, 2018; Fudenberg, Rand, and Dreber, 2012. Fudenberg,

Rand, and Dreber, 2012 shows that longer memories are used when the intended actions are
implemented with noise and only the realized actions are observed. Romero and Rosokha, 2018
and Dal Bó and Fréchette, 2019 directly elicit pure strategies; Romero and Rosokha (2019a,b) elicit
mixed strategies as well and find that most participants prefer to randomize, though the elicited
strategies become less mixed over time.
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and last supergame in a session. Moreover, Dal Bó and Fréchette, 2011 argues that δ
has no apparent effect on behavior in the first supergame, but a substantial impact
on later supergames. Similarly, the difference between treatments increases over time,
with average cooperation going down in games where no cooperative SPE exist, and
going up in games where ∆RD is high. A common explanation for the observed time
trends is that participants learn from feedback over the course of a session, and choose
their supergame strategies based on outcomes in the previous supergames. 9

The literature establishes two other empirical regularities that are related to
learning. First, cooperation increases when the realized supergame lengths are longer
than expected, and decreases when they are shorter than expected. Engle-Warnick and
Slonim, 2006 and Dal Bó and Fréchette, 2011, 2018 find that cooperation in the initial
round increases if the previous supergame was longer than expected, and Mengel,
Orlandi, and Weidenholzer, 2022 finds that this effect is persistent: cooperation later
in a session is higher when the early supergames are longer than expected. Second,
Dal Bó and Fréchette, 2011, 2018 find that initial-round cooperation is higher if the
player’s partner cooperated in the first round of the previous supergame. These two
effects point to a model where some form of learning or reinforcement drives play in
the initial rounds.

The larger literature on learning in game theory experiments has been focused on
one-shot games, for example in (Camerer and Ho, 1999; Cheung and Friedman, 1997;
Erev and Roth, 1998), and has not emphasized the issue of out-of-sample prediction.
Fudenberg and Liang, 2019 and Wright and Leyton-Brown, 2017 study ways to predict
initial play in matrix games, but don’t consider learning.

4 Summary of the data

We analyze the data from the meta-analysis in Dal Bó and Fréchette, 2018, data
gathered from repeated prisoner’s dilemma experiments with perfect monitoring,
deterministic payoffs, and constant parameters within a session that were published
by 2015. We use only the treatments with δ > 0, and augment this data with data
from sessions that match these criteria from four papers published since then (Aoyagi,

9Dal Bó and Fréchette, 2011 considers a simple belief learning model involving only TFT and AllD,
Mengel, Orlandi, and Weidenholzer, 2022 consider a similar learning model that also incorporates
learning about expected supergame length, and Erev and Roth, 2001, Hanaki, Sethi, Erev, and
Peterhansl, 2005 and Ioannou and Romero, 2014 study learning within supergames.
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Bhaskar, and Fréchette (2019), Dal Bó and Fréchette (2019), Honhon and Hyndman
(2020), and Proto, Rustichini, and Sofianos (2019)). This increases the number of
sessions by approximately 60%. Our resulting data set contains observations from
17 papers, 28 different treatments,10 and 161 incentivized experimental laboratory
sessions, containing 2,612 distinct participants and 232,298 individual choices. Here
we highlight some aspects of the data that are of particular relevance to our work.

The discount factors ranged from 0.125 to 0.95, with almost all at least 0.5. The
median session has an average realized supergame length of 6.7 rounds. Figure 2 of
the Online Appendix shows the CDF of the average realized supergame per session.

In 20 of the sessions, δ < δSPE, so no cooperation can occur in a subgame perfect
equilibrium. In 28 sessions, cooperation can be supported by a SPE, i.e. δ > δSPE,
but δ < δRD, so cooperation is not risk dominant in the sense of Blonski, Ockenfels,
and Spagnolo, 2011. In the remaining 113 sessions, δ > δRD or equivalently ∆RD > 0.

The average rate of cooperation over all sessions was 44.1%. It was 10.5% for
games where δ < δSPE, 18.6% for δSPE < δ < δRD, and 53.6% for δ > δRD.

Table 1 shows average play after the different memory-1 histories, and the histo-
ries’ frequencies. We see that the CD and DC histories are only a small subset of
observations, roughly 14% combined. Furthermore, average behavior is close to the
semi-grim memory-1 mixed strategy from Breitmoser (2015), with the difference that
the probability of cooperation only slightly higher after DC than after CD.

Table 1: Average cooperation rate after different memory-1 histories

History Avg C N
CC 96.6% 59,436
CD 30.6% 16,704
DC 33.2% 16,704
DD 5.2% 74,624
initial 47.1% 64,830
Total 44.1% 232,298

As shown in Online Appendix A, the average rate of cooperation in the initial
round of the first supergame is increasing in ∆RD. Moreover, the way initial-round
cooperation changes over the course of a session varies with ∆RD: For ∆RD > 0.15,

10Following Dal Bó and Fréchette (2018), we consider experiments in different labs to be the same
treatment if they had the same normalized parameters. The total number of unique paper and
parameter combinations is 47.
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initial-round cooperation rates increase over the course of a session; for ∆RD < 0 they
decrease, and in sessions where 0 < ∆RD < 0.15, they remain roughly constant at
around 50%. This pattern is much less sharp after the other memory-1 histories, which
suggests that the differences in average cooperation across treatments are primarily
driven by differences in the behavior at the initial round.

To investigate whether that is the case, we use some simple regressions. As reported
in Table 1 of the Online Appendix, we can predict cooperation in a given match
relatively well using only the outcome of the initial round. Adding the game parameters
(g, l, δ, and ∆RD) increases R2 by less than 0.01, and keeping the game parameters
omitting the initial round yields a much lower R2. Doing the same regressions but
with second-round average cooperation as the outcome does not change the picture.

Finally, we investigate the assumption that behavior in non-initial rounds is
roughly constant and consistent with the restriction that σCD = σDC .When we regress
cooperation in non-initial rounds conditional on the outcome of the previous round,
the round, ∆RD, and the supergame, none of the additional effects is quantitatively
relevant, and the in-sample increase in R2 is only 0.002. Moreover, as shown by Table 7,
while initial play and average cooperation vary substantially with ∆RD, behavior after
non-initial histories is roughly the same across rounds and different values of ∆RD.

5 Predicting Cooperation

We try to develop models that can successfully predict cooperation levels in a repeated
game experiment before the experiment is run, based on the game parameters, the
number of repeated games played, and their lengths, without using any data from the
experiment itself. We would also like the model to roughly accord with how people
actually behave, but we do not try to capture all of the details of individual or even
aggregate behavior. To choose model parameters and compare models, we use their
estimated out-of-sample predictive performance as measured by cross-validated mean
squared error (MSE). Using cross validation helps prevent overfitting, and makes sure
that the regularities we find actually improve predictions. In general, out-of-sample
predictions will favor models that rely on stable predictors, and such models are
typically simpler than those that give the best in-sample fit.

In addition, using out-of-sample prediction error as the benchmark makes it easy
to compare models of different complexities, because the out-of-sample prediction
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criterion endogenously penalizes models that are too complex. We also report the
relative improvement of the models compared to a constant prediction benchmark, in
order to get a better sense of how big the differences are.11

5.1 Predicting Cooperation with Learning

We do not have an analytic solution for the probability distribution of time-paths
that is generated by the IRL-SG. Thus to use the IRL-SG (and more general variants
of it that we discuss later) to make predictions, we simulate populations playing
the different sessions assuming they behave as the model specifies. In particular, we
use the simulations to generate the experience levels ei, and do not use data on the
actual initial round actions or the payoffs that people actually received. We initialize
a large population of individuals, all with ei(1) = 0. For a given specification of
parameters of the learning model, we randomly match these simulated individuals
to play a sequence of supergames. After each supergame, the individual experiences
are updated according to equation (2), using the simulated values. The simulated
individuals are then randomly re-matched and play the second supergame for the
number of rounds it was played in the experimental session. So it continues until we
have simulated a population playing exactly the same sequence of supergames as in
the experimental session, updating the ei(s) after each supergame.

Once we have simulated a population, we can calculate either average cooperation
or the time path of cooperation, that is the percentage of participants who cooperate
in each round 1, 2, ... of any supergame in a given treatment. We use the simulations
as predictions and compute the approximate prediction losses and associated standard
errors. 12

We estimate the learning models based on the time path of cooperation, even when
predicting average cooperation. That is, we find the parameters that best predict the
time path of cooperation in the training set, and use those parameters to predict both
the average cooperation and the time path of cooperation in the test sets. This way,
we use more of the data to estimate the model.

11This use of a simple prediction rule as a benchmark is inspired by the completeness measure of
Fudenberg, Kleinberg, Liang, and Mullainathan, 2022, but we do not have enough data to make a
good estimate of the problem’s irreducible error as the completeness measure requires.

12Our method only tries to match the mean cooperation rates of the simulations and the actual
data. However, as Table 7 shows the resulting estimates also do a good job of matching variance in
cooperation levels across supergames with the same parameters.
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Appendix A gives a detailed description of the numerical process. In Online
Appendix C we evaluate this estimation procedure on synthetic data generated by
simulations, and confirm that it should work on a data set of the size we have.

Our main learning model, presented earlier in equations (1) and (2), assumes all
agents use the same learning rule, which is an oversimplification. However, agents with
the same learning rule can behave differently as the result of different experiences, and
as we will see, allowing heterogeneous learning rules does not improve our predictions.

The restriction to memory-1 strategies is motivated by past work and by the
machine learning analysis in Online Appendix D. The assumption that play across
treatments is the same except in the initial rounds is motivated by the descriptive
statistics. We relax the assumption of fixed behavior at non-initial histories in section
5.4, which considers a more richly parameterized model that lets play at these histories
depend on ∆RD. We also consider variations of the IRL-SG that generalize the learning
part of the model in various ways, and alternative models where individuals learn
which pure strategy to use. None of these extensions improve predictions.

5.2 Results

We now compare the performance of IRL-SG to that of OLS, Lasso, SVR (support
vector regression), and GBT (gradient boosting trees). When we use machine learning
to predict the average cooperation level in a session, each session is a single data point.
The feature set consists of ∆RD, the game parameters (g, l, δ), the total number of
rounds played in the session, the number of supergames played in the session, an
indicator variable for whether ∆RD > 0, the difference between expected and realized
supergame lengths in the first third of the session13, the total difference between
expected and realized supergame lengths, and some interaction terms.14

When we predict the time path of cooperation, a data point is the average (across
participants) cooperation level of each round of each supergame in a session; this gives
a total of 15,599 data points, though the data within each session is highly correlated.
For the feature set of the time path, we add an indicator for the initial round, the
round number, and the supergame number, along with some interaction terms. We

13Mengel, Orlandi, and Weidenholzer, 2022 argues that the realized length in the first third of the
supergames has an oversized impact on cooperation in later supergames.

14The alternative method of training the ML algorithms on time paths, and using time path
predictions to predict average cooperation, yields similar but slightly worse results.
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replace the features about realized supergame lengths with the cumulative difference
in expected and realized supergame lengths, and the difference between expected and
realized length of the previous supergame.

Table 2 shows the out-of-sample prediction errors for average cooperation for the
IRL-SG and for OLS. In this and the subsequent tables we also report the performance
of the best of the model-free predictors, which here is SVR. We see that our learning
model performs better than simple OLS on ∆RD, and in fact slightly better than the
harder-to-interpret machine learning algorithms. This is in part due to the fact that
our data set is relatively small by machine learning standards.

Model Avg C MSE S.E. Relative Improvement
Constant 0.0517 (0.0040) -
OLS on ∆RD 0.0189 (0.0020) 63.4%
Best ML 0.0143 (0.0016) 72.3%
IRL-SG 0.0138 (0.0015) 73.3%

Table 2: Out-of-sample prediction MSE for average cooperation. The best ML method
is Lasso.

To estimate the out-of-sample prediction errors, we use cross validation with the
standard 10 folds. 15 For each fold, we use the other nine folds as a training set to
estimate the parameters, and make predictions on the test fold using those parameters.
Importantly, we split on the level of the session, so each observation is predicted
using only data from other sessions. To estimate the standard errors of the estimated
mean squared error (MSE), we do 10 different such cross validations, leading to 10
predictions of each session, to capture the randomness from the assignment to different
folds. We then bootstrap to get standard errors. By using the same folds for all models,
we can perform pairwise comparisons. Pairwise tests are presented in Appendix E.
According to those pairwise tests, our learning model is indeed significantly better
than an OLS on ∆RD, though its improvement on best ML method is too small to be
significant.

In table 3 we see similar results for predicting the time path of cooperation. Not
only is IRL-SG better than the alternatives at predicting average cooperation in a
session, but it is also better at predicting the time path of cooperation:

15See, e.g., Hastie, Tibshirani, and Friedman, 2009 for an explanation of cross validation.
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Model Time-path MSE S.E. Relative Improvement
Constant 0.0775 (0.0050) -
OLS on ∆RD 0.0398 (0.0025) 48.6%
Best ML 0.0316 (0.0020) 59.2%
IRL-SG 0.0309 (0.0020) 60.1%

Table 3: Out-of-sample prediction loss for predicting the time path of cooperation.
The best ML method is GBT

Figure 2 shows the out-of-sample predictions and actual values of cooperation in
the initial round of the first 20 supergames. (We plot the initial round to reduce the
noise introduced by changing supergame lengths.) To get the out-of-sample predictions
for the figure, we use a single 10-fold cross validation split and then predict each
session’s time path with the parameters estimated without data from that session.
The learning model predicts the general pattern well, but it slightly underestimates
the level of cooperation for intermediate values of ∆RD.

Figure 2: Actual (solid line) and out-of-sample predicted (dashed line) initial-round
cooperation by supergame for sessions of at least 20 supergames
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The next table shows the average of the estimated parameters; the standard
deviations show how much these parameter estimates vary between folds.

Parameter α β λ pCC pCD/DC pDD

Average -0.268 1.291 0.182 0.995 0.355 0.012
Standard Deviation (0.061) (0.160) (0.036) (0.002) (0.026) (0.006)

Table 4: Parameter estimates

From here on, when we analyze the behavior of the model and discuss parameter
values, we will be using these average estimates.

To interpret the parameter estimates, recall that experience is updated according
to

ei(s) = λ · ai(s− 1) · Vi(s− 1) + ei(s− 1).

which then enters into the probability of initial round cooperation via

pinitial
i (s) = 1

1 + exp (−(α + β ·∆RD + ei(s)))
.

The estimated α = −0.268 means that for ∆RD = 0, about 43.3% of participants
would cooperate in the first round of their first supergame. With ∆RD = 0.1, the
probability of cooperation in the first round of the first supergame increases, but only
to 46.5%, and even when ∆RD increases to 0.3 first-round cooperation only increases
to 53%.

In contrast, λ = 0.182 implies a strong learning effect. As an example, consider the
case where g = l = 2 and δ = 0.8, so ∆RD = 0. If the first supergame an individual
i plays goes the expected 5 rounds and both partners cooperate all 5 rounds, then
i’s probability of first-round cooperation goes from 43.3% to 65.6%. An individual j
experiencing DC in the first round and DD in the remaining 4 rounds gets a payoff
of 3, which implies that their initial-round cooperation would decrease to 30.6%.

To get a sense of the relative importance the model assigns to ∆RD and the learning
effect that works through ei(s), we compute the Shapley values of these terms in a
decomposition of the variance of predicted initial play in the last supergame. 16

16Since ∆RD and ei(s) are correlated, and enter into the model in a non-linear fashion, their
marginal contribution depends on whether they are considered alone or in addition to the other
factor. Our use of the Shapley value to account for this follows Lundberg and Lee (2017) and Molnar
(2019).
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As we show in Appendix D, this decomposition suggests that in the last supergame
of each session, approximately 88% of the variation between treatments is driven by
learning as opposed to the direct influence of the game parameters.

5.3 Across-Treatment Predictions

Our main analysis considers out-of-sample prediction within the same domain. That
is, the whole set of treatments is considered for both the training and test set, so the
prediction algorithm does not have to generalize to a different setting. One reason to
prefer more structured economic models is the hope that such models are more likely
than model-free algorithms to capture regularities that generalize across domains.

To test this intuition, we consider the problem of predicting behavior in treatments
different from those the model is estimated on. We divide the data into the five
∆RD-groups used in Figure 2. We consider separately the treatments where δ ≤ δspe,
δspe < δ ≤ δRD, 0 < ∆RD ≤ 0.15, 0.15 < ∆RD ≤ 0.3, and 0.3 < ∆RD.

For each ∆RD-groups we create a training pool by merging the data from the other
four groups. We then randomly generate 10 training sets by sampling with replacement
from the training pool, each of the same size as the training pool itself. We use these
training sets to estimate parameters for the held-out group.For example, we use only
treatments with δ > δspe to predict the treatments where δ < δspe. The randomly
generated training sets are then kept the same across all the different prediction
methods. Each session is thus predicted 10 times, each time with a different training
set. We then bootstrap samples from those predictions to estimate the standard errors
for the predictions.

In Table 5 we see that all the prediction methods perform worse, but the model-free
methods are considerably worse than the IRL-SG model. Most model-free methods
perform worse than an OLS on ∆RD. Moreover, as shown in Table 17 of the Appendix,
IRL-SG is significantly better at this across-treatment prediction task than all but
the SVR method, for which the difference is narrowly insignificant. This finding
echoes that of Andrews, Fudenberg, Liang, and Wu (2022), who find that even though
the out-of-sample performance of cumulative prospect theory and machine learning
algorithms is similar when the model or algorithms are trained and tested on data
from the same domain, the model does a better job of extrapolating from one set of
lotteries to another.
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Model Avg C MSE S.E. Relative Improvement
Constant 0.0885 (0.0057) 0.0%
OLS on ∆RD 0.0255 (0.0028) 71.2%
Best ML method 0.0235 (0.0027) 73.4%
IRL-SG 0.0177 (0.0019) 80.0%

Table 5: Across-treatment out-of-sample prediction MSE for average cooperation. The
best ML method was SVR. A full table can be found in Appendix C

5.4 Comparison with Alternative Models

We considered variants of our model that add more parameters, and also models where
participants learn to play pure strategies. We present the most relevant comparisons
here, and include further models and complete results in Appendix B and C. The
variant with two types of agents with different parameters does very slightly better
than the IRL-SG in terms of cross-validated prediction error (but not significantly
so); all of the other alternatives do worse and in particular all models based on pure
strategy learning are significantly worse.

We choose to focus on the IRL-SG model, and not one of its extensions, since
it is the simplest. However, one of the extensions might be more suitable for other
purposes, such as predicting responses to opponent’s play near the end of a supergame.

Learning with memory-1. Here we drop the semi-grim requirement that σDC =
σCD, increasing the total number of parameters to 7.

Learning at all memory-1 histories. So far, we have restricted learning to
the initial round, and kept behavior at non-initial rounds constant, both across time
and treatments. To relax this and allow learning at all memory-1 histories, we track
experience ei(h, t) at each memory-1 history h, where t is now a time variable running
over all rounds and all supergames.

The intuition behind this model is similar to the intuition for the IRL-SG. If
a player chose action a at memory-1 history h, she is more likely to choose a the
next time she observes h if it lead to a good outcome, and less likely if it lead to
bad outcome. However, since the final outcome of an action is not known until the
supergame is over, the cooperation probabilities are only updated at the beginning
of each supergame. To define good or bad outcomes, we let Vi(t) be the total payoff
from time t to the end of the corresponding supergame. If a player cooperated after
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a CD history in round 3 in a supergame, and both players ended up cooperating in
the remaining two rounds of that supergame, the corresponding Vi(t) is 2. This is
independent of the payoffs in earlier rounds in that supergame. Furthermore, since
Vi(t) is not known before the supergame has ended, we only consider learning across
supergames.

In other words, the experience at memory-1 history h is updated when h occurs
using the rest of the supergame payoff Vi(t) according to

ei(h, t+ 1) =

λ · ai(t) · Vi(t) + ei(h, t) if h(t) = h

ei(h, t) if h(t) 6= h

where h(t) is the memory-1 history at time t.
The probabilities of cooperation are only updated at the beginning of each su-

pergame, and remain constant during the rest of that supergame. So the probability
of cooperating at memory-1 history h is given by

pi(h, t) =


1

1 + exp(−(αh + βh ·∆RD + ei(h, t))
if r(t) = 1

pi(h, t− 1) if r(t) > 1

where r(t) denotes the round at time t. This model thus has 11 parameters.
A last variation of this model allows for two different learning rates: Learning

in the initial round happens with λinitial, and learning for the memory-1 histories is
reinforced with λ1, which increases the number of parameters to 12.

The IRL-SG with two types. We assume that there are two different types
with different parameters, and one parameter that determines the shares of the two
types in the population, which adds seven parameters. 17

Pure strategy belief learning. The pure strategy belief learning model in Dal
Bó and Fréchette, 2011 assumes that all participants follow either TFT or AllD. Each
participant has beliefs about how common TFT and AllD are in the population, which
the participant updates based (only) on the opponents’ moves in the initial rounds,
and uses them to calculate the expected values from playing TFT or AllD. Given

17Allowing for heterogeneous participants only improves our predictions very slightly. But other
work suggests that we might be able to make larger improvements if we had demographic information
about the participants in each session. For example, Proto, Rustichini, and Sofianos, 2019 shows
that groups of more intelligent people are more likely to cooperate.
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these expected values, the participant’s choice of whether to play TFT or AllD in the
following supergame is given by a logistic best reply function. We extend this model
to allow for across-treatment prediction, increasing the original 6 parameters to 8. We
also consider a version of the pure strategy model with symmetric implementation
errors. A more complete description of the model can be found in Online Appendix B

Pure strategy reinforcement learning. In the pure strategy reinforcement
learning model, we consider reinforcement learning over the pure strategies AllD,
Grim, and TFT. Each of the pure strategies k starts with an initial attraction Ak(1).
At the beginning of each supergame s, the individual samples the pure strategy to use
according to

pk(s) = exp (λAk(s))∑
l∈{T F T,AllD,Grim}

exp (λAl(s))

where pk(s) is the probability of using pure strategy k in supergame s, and λ denotes
the sensitivity. Let k(s) denote the pure strategy used in supergame s, then after
supergame s, the attraction of the pure strategy used is updated according to

Ak(s+ 1) =

Ak(s) + V (s) if k(s) = k

Ak(s) otherwise.

The initial attractions are given by linear functions of ∆RD, i.e., Ak(1) = αk + βk∆RD.

We then extend the model to allow for symmetric errors or “trembles” ε when
implementing a pure strategy. In other words, if an individual is following TFT
and the previous history is DC, the probability of cooperating is 1 − ε, instead of
1, and similarly for other pure strategies and histories. In total this model has 7 (8)
parameters without (with) symmetric trembles.

Results Table 6 compares some of the alternatives considered in this subsection.
Neither pure strategy model does as well as IRL-SG. Appendix C gives a complete
table of these comparisons, and the results for the time-path prediction problem,
which show a similar relationship between the models. Pairwise tests for significance
are presented in Appendix E.
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Model Avg C MSE S.E. Relative Improvement
Pure strategy belief learning w/ trembles 0.0191 (0.0020) 63.0%
Pure strategy reinf. learning w/ trembles 0.0175 (0.0020) 66.1%
Learning with memory-1 0.0140 (0.0015) 72.7%
Learning at all memory-1 0.0139 (0.0016) 73.1%
IRL-SG 0.0138 (0.0015) 73.3%
IRL-SG, two types 0.0136 (0.0015) 73.7%

Table 6: Out-of-sample prediction loss (MSE) of average cooperation

Taken together, this suggests that the simple IRL-SG captures most of the pre-
dictable regularity in cooperation rates. Introducing heterogeneity improves predictions
at most marginally, as does learning or flexibility at non-initial rounds. If fact, ex-
tending our model often seems to lead to slightly worse out-of-sample performance,
most likely due to overfitting, and pure-strategy learning models do predict well.

To further test how well IRL-SG captures the predictable aspects of the data, in
Online Appendix E we consider different combinations of IRL-SG predictions and
ML-methods. In the first approach, we use the predictions of the IRL-SG as a feature
for the ML-methods. In the second, predictions of initial-round behavior are taken
from the IRL-SG. We then use machine learning to predict play in subsequent rounds.
Neither approach improved predictions by a non-trivial amount.

In Online Appendix D we instead consider the problem of predicting the next
actions taken by an individual player. Here we see some advantage to allowing
different types. However, that advantage is much smaller for our learning model than
for models without learning, and a single IRL-SG performs as well as a mixture model
that estimates the shares of 11 different pure strategies on each treatment.

5.5 Understanding the Model

Our simple learning model is able to accurately predict average cooperation and the
time path of cooperation, while holding fixed the strategies used in the non-initial
rounds. We now briefly discuss the roles of the more important parts of our model.

Reinforcement of Initial Actions. For each session, let π(C) be the average
supergame payoff received by participants who cooperated in the initial round and
define π(D) analogously. Figure 3 demonstrates the correlation between π(C)− π(D)
and ∆RD in the experimental and simulated data sets. The simulated data is generated
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with 100 populations of size 16 for each session, simulated on sessions with the same
supergame lengths as in the data. The populations size 16 is chosen based on the
average population size in the data.

Figure 3: Per-session empirical (left) and simulated (right) average difference between
total payoff in supergames where the participant cooperated and defected

For ∆RD < 0, defection is reinforced more strongly than cooperation in all but
one session. For positive but low values of ∆RD, the difference in reinforcement
π(C)−π(D) is centered around 0, so cooperating and defecting are on average equally
reinforced. This helps explain why we see no clear time trends in the sessions where
0 < ∆RD < 0.15.

Even though π(C)−π(D) is correlated with ∆RD, our learning model makes better
predictions than using ∆RD directly. This suggests that the dynamics of our learning
model help capture some additional forces that determine cooperation, such as how
many supergames were played and their realized lengths. Indeed, as we observed
above, our model does make better use of the realized supergame lengths than our
ML algorithms do. In particular, our model succeeds in replicating the empirical fact
that there is more cooperation when the realized supergames are longer. Intuitively,
this is because regardless of the distribution of opponent play, the potential reward
from initially playing C is increasing in the realized supergame length, as it comes
from triggering many future rounds of where both play C, while the reward from an
initial D is obtained immediately.

The composition of ∆RD. To see how well ∆RD captures the effects of the
individual game parameters, we simulate populations with the same ∆RD but with
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different game parameters. The next figure plots predicted average cooperation for
g + l = 3, with δ chosen so that ∆RD ∈ {0, 0.1, 0.2}.18 For each of the treatments
we consider (a dot in the figure), we simulate 1000 populations of 16 playing 27
supergames (the average in the data). As Figure 4 shows, our model predicts that the
values of g and l have an effect that is not captured by the composite parameter ∆RD.
In particular, increasing g − l for fixed g + l seems to dampen the effect of ∆RD. In
other words, higher g− l results in decreased cooperation if ∆RD is high, but increased
cooperation if ∆RD is low.19

Figure 4: Predicted average cooperation over 27 supergames for fixed g+ l but varying
g − l

Between session variation and ∆RD. In the IRL-SG, behavior is reinforced
based on experience. Since both behavior and realized supergame lengths are random,
there is noise in the realized experiences. When δ < δSP E, there is a unique equilibrium
and over time experiences should drive all individuals to defection. When δ ≥ δSP E,

randomness could drive the population to either cooperation or defection. Thus for
low values of ∆RD we predict and see consistently low cooperation rates with relatively

18The value of ∆RD depends on g and l only though their sum; with g + l = 3, s ∆RD = 0 when
δ = 0.75.

19There are not enough experiments with the same ∆RD and different g, l to directly test this
prediction.
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small between session variance. For intermediate values, we should see very high levels
of between session variance, since small random differences can have big effects. Lastly,
for high values of ∆RD we should see more variance than for very low values of ∆RD,
but less than for intermediate values of ∆RD.

Table 7 shows that the predicted pattern is observed in both the experimental
and simulated data. For the simulated data, 100 sessions with population size 16
were simulated for each session in the experimental data, each with the same realized
sequence of supergame lengths. For most values of ∆RD, we only have a few sessions.
We, therefore, group the sessions into similar values of ∆RD. For each of the group we
report the 5%-quantile, the median, and the 95%-quantile.

Actual Simulated
∆RD-group Q05 Median Q95 Q05 Median Q95
δ < δSP E 0.03 0.14 0.26 0.08 0.13 0.29

δSP E < δ ≤ δRD 0.03 0.18 0.30 0.10 0.19 0.29
0 < ∆RD ≤ 0.15 0.15 0.40 0.70 0.21 0.37 0.65

0.15 < ∆RD ≤ 0.3 0.30 0.55 0.74 0.26 0.49 0.67
0.3 < ∆RD 0.44 0.65 0.83 0.53 0.65 0.85

Table 7: Across session variation in average cooperation for different groups of ∆RD

This large variation in outcomes for intermediate values of ∆RD suggests that
caution should be taken when interpreting experimental studies of the Prisoner’s
Dilemma. Most experiments have few sessions per treatment condition, and learning
effects can give rise to large variations between sessions even when the individuals are
ex-ante identical.

Non-initial play. The performance of the IRL-SG suggests that learning does
not lead agents to adjust their play very much at non-initial rounds. Here is one
conjecture about why this might be: Suppose there is a cognitive cost associated
with learning from experience and adjustment to game parameters. In that case, we
should expect learning and adjustment to happen where the relative payoff is the
greatest, which is in the initial round.20 To test this intuition, we assume that all
other individuals behave according to our estimated IRL-SG, and then calculate the
potential gain from learning and adjustment at different histories. We first consider

20There are more initial histories than DC and CD histories, and the evaluation of non-initial
histories may depend on outcomes in prior rounds. Also, given the path dependence of play, our
prior is that the initial decision is the most important.
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a baseline fixed memory-1 model without any learning or adjustment to ∆RD. We
then consider extensions where learning and adjustment are added to initial and/or
non-initial memory-1 histories. The best fixed-memory model achieves a normalized
average payoff per session of 43.6; the best IRL-SG achieves 54.3 and the model with
learning at all histories and two learning rates only increases that to 55.4.

6 Extrapolating to Longer Experiments

Due to practical constraints, experiments on the PD are of limited duration. Our
learning model lets us make predictions of what would happen in experiments with
a longer time horizon than those in our data set. This gives us some sense of which
properties of observed lab play may carry over to repeated games that are played
more times than is practical in the lab.21

6.1 Extrapolating within observed sessions

Before exploring the implications of the learning model for long-run play, we want to
test how well it can extrapolate to longer sessions than it is trained on. To do this,
we use the same cross-validation folds as earlier, so that data from a given session is
either in a training fold or a test fold but not both. We then use the first halves of the
training sessions to estimate the parameters, and use the estimated model to predict
the second half of the sessions in each test set. This is a way of approximating how
accurate our predictions would be for experiments that are twice as long as the ones
in the sample.

We estimate the parameters of the different models in the first half of the session,
and use them to predict average cooperation in the second half. To do this, we first
predict the time path and calculate the resulting average cooperation. We do this for
both the IRL-SG and ML algorithms. Table 8 displays the cross-validated MSE for
selected models; the full table is in Appendix C.

21The median number of supergames played in our data is 21 and in 90% of sessions participants
play between 6 and 65 supergames.
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Model Avg C MSE Avg C S.E.
Constant 0.0695 (0.0055)

OLS on ∆RD 0.0281 (0.0032)
Best ML method 0.0254 (0.0027)

IRL-SG 0.0220 (0.0026)

Table 8: Prediction loss (MSE) estimating on 1st half and evaluating on 2nd half.
Best ML method is GBT.

The table shows that the learning model is better at extrapolating to longer
supergames than our model-free Machine Learning algorithms or simple OLS. Appendix
E confirms that this difference is significant using pairwise tests. This might be due
to our particular ML implementations, but it is also true that model-free prediction
algorithms can have trouble extrapolating to slightly different settings, something we
saw when considering predictions across treatments. A more structured model that
encodes some intuition or knowledge about the problem domain can sometimes better
extrapolate to related prediction problems, and we suspect that this is the case here.
The prediction losses are higher here than in our main results as reported in Table 2,
at least in part because the between-session variance in cooperation is larger in the
later supergames: the within-treatment variance in average cooperation is 0.0145 in
the first halves of the sessions and 0.0196 in the second halves. 22

6.2 Extrapolating to hypothetical session lengths

We generate predictions for the treatments in Dal Bó and Fréchette (2011), since
these capture a nice range of behavior. For each of the treatments, 1,000 populations
with 14 participants (which was the average in the original paper) were simulated
for 10,000 supergames, with randomly drawn supergame lengths. We then simulated
the learning model with the average (across folds) parameters estimated on the time
path in table 4. Using these simulations we can compute the median level of average
cooperation and its 90% confidence interval.

22To calculate these variances we restrict to treatments with at least 2 sessions.
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∆RD δ Q05 Median Q95
-0.32 0.50 0.00 0.01 0.04
-0.11 0.50 0.00 0.01 0.05
0.11 0.50 0.00 0.40 0.79
-0.07 0.75 0.00 0.06 0.38
0.14 0.75 0.18 0.51 0.83
0.36 0.75 0.54 0.80 1.00

Table 9: Simulated cooperation after 10,000 supergames, 14 participants per session

∆RD δ Q05 Median Q95
-0.32 0.50 0.00 0.01 0.02
-0.11 0.50 0.00 0.01 0.02
0.11 0.50 0.15 0.43 0.64
-0.07 0.75 0.00 0.05 0.28
0.14 0.75 0.35 0.52 0.68
0.36 0.75 0.68 0.79 0.88

Table 10: Simulated cooperation after 10,000 supergames, 100 participants per session

Tables 9 and 10 show quite wide 90% intervals for intermediate values of ∆RD.
This seems due to the effect of the randomness on experience and learning, which is
more pronounced when the population is small. In the treatment ∆RD = 0.11, even
after 10,000 supergames, the 90% interval goes from 0% to 79%. (With populations
of 100 participants, the 90% interval is smaller but still substantial; it goes from
15% to 64%.) This randomness comes in part from random initial play in a finite
population and in part from the randomness in the realized supergame lengths. Even
if we increase the population size to 1,000, the 90% interval is still from 24% to 60%.
However, if we also let all the simulated supergames have the expected number of
rounds, the 90% interval is only 44% to 49%.
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Figure 5: Predictions and actual behavior for six different treatments. The solid black
line corresponds to the data, the red lines depict average cooperation and the middle
90% interval in 1,000 simulated populations.

Figure 5 displays the actual data and our confidence intervals for the time paths
of cooperation in these treatments.23

The intervals are smaller in treatments where ∆RD has a more extreme value
in either direction. For ∆RD < 0, we predict less than 50% cooperation, and for
∆RD = −0.32 cooperation is almost certain to decrease. For ∆RD = 0.14 we see a slow
increase in initial round cooperation to 51%, and for ∆RD = 0.36 we predict relatively

23Dal Bó and Fréchette, 2011 use their pure-strategy belief learning model to produce similar plots
for initial-round cooperation. Visual inspection suggests that our simpler model fits the data about
as well.
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fast and certain convergence to a high cooperation rate.
We get a broader picture of the long-run predictions by replicating this exercise for

all 28 treatments in the data. In figure 6 we see the average cooperation after 10,000
supergames, predicted by simulating 1,000 populations of size 16 for each treatment.
We see that for ∆RD between 0 and 0.3, even after 10,000 supergames, the learning
model does not predict either very high or very low rates of cooperation.

Figure 6: Predicted average cooperation after 10,000 supergames

7 Conclusion

The IRL-SG is simple and portable, with only 6 parameters and only one type of
agent. The model lets us capture the effect of playing more supergames on average
cooperation, so that we can predict what average cooperation rates would be with
longer lab sessions. The IRL-SG model is also better at extrapolating and predicting
cooperation in new treatments than model-free algorithms such as ML. All the model-
free algorithms we considered are worse both at across treatments and at extrapolating
the effect of longer sessions, and each is significantly worse in at least one of these
tasks.

Our analysis shows that one does not need to model variation in non-initial play
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to accurately predict average cooperation rates or the population’s time path of
cooperation, because the primary determinant of cooperation rates is whether players
cooperate or defect at the start of a new relationship. Moreover, the main way ∆RD

influences cooperation rates is through its effect on the probability of cooperation
in the initial round of a match. Initial cooperation is positively reinforced when
∆RD > .15, so in these games the probability of cooperating in the initial round
increases over the course of a session. Initial cooperation is negatively reinforced when
∆RD < 0, so here initial cooperation rates drift down. For intermediate values of
∆RD, a participant’s overall payoff is about the same regardless of how they play in
the initial round, which is why in these games initial cooperation rates stay roughly
constant throughout a session.

In addition to explaining the influence of ∆RD, the IRL-SG captures the influence
of additional determinants of cooperation, such as the composition of ∆RD: It matters
how a given ∆RD is achieved. In particular, different values of (g − l) have different
implications for the same ∆RD, and moreover the sign of the effect depends on the
magnitude of ∆RD. While there is not enough data to directly test these effects, it is
a likely explanation to why the IRL-SG predicts cooperation better than just OLS on
∆RD.

We choose to focus on the IRL-SG model since it is the simplest model among
those that performed the best. However, as can be seen in Table 6, generalizing the
model to flexible behavior, and even learning, at non-initial histories does not help
predictions.

The analysis in our paper requires data from a great many sessions and treatments,
and it was only made possible by the work of the researchers whose data we used.
For this reason it only considers the prisoner’s dilemma with perfect monitoring. In
repeated games with implementation errors or imperfect monitoring, people seem
to use more complex strategies with longer memory (Fudenberg, Rand, and Dreber,
2012). There are not yet enough experimental studies of these games to see if ∆RD

plays a significant role there, let alone to support the sort of analysis we do here. Once
there are, it would be useful to extend our analysis of average cooperation rates to
this case.
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A Numerical Estimation of Learning Models
To simulate a decision, a number r ∼ Uniform(0, 1) is drawn, and if that number is
lower than the probability of cooperation for the simulated individual, she cooperates,
otherwise defects. Similarly, the type of each individual is decided by a random draw.
We then simulate a full session of individuals in this fashion and calculate the average
cooperation (or time path) and the corresponding MSE. By fixing all the draws of
these values r, we get a deterministic error function.

The resulting function is locally flat, which means that finding an optimum is
difficult. To address this problem we first generate 30 candidate points using the
following global differential evolution24 optimization in parallel, using 100 individuals
with a common set of random numbers.

1. First a population is initialized: For each agent x, we pick 3 new agents a, b, c from
the population of candidates and generate a new candidate x′. Each parameter
xi of x is updated with some probability CR (the cross-over probability), and if
it is updated the new value is given by x′

i = ai + F ∗ (bi − ci). Once this is done,
we compare the new value f(x′) with the old f(x). If the this results in a lower
loss, the new candidate replaces the old in the population, and otherwise it is
thrown away.

2. After a fixed amount of time, the best candidate from this algorithm is used as a
starting point for a Nelder-Mead algorithm that performs a local, gradient-free,
optimization, using a different fixed realization of the random variables. The
output of this local optimization is then returned as a candidate solution.

Once these 30 candidate points are found, they are each evaluated using a pop-
ulation size of 3,000, with a new fixed realization of the random draws r for all 30
candidates. The best of these parameters are then returned as the solution.

24From the package BlackBoxOptim.jl.
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B Alternative models
Here we describe variations of the IRL-SG model that did not improve predictions.

IRL-SG with a recency effect. To allow more recent supergames to have a
larger impact on behavior, we consider a model with experience weighted by recency.
In that model, experience is updated according to

ei(s) = λ · ai(s− 1) · Vi(s− 1) + ρ · ei(s− 1),

where ρ ∈ [0, 1] discounts previous experiences.
Flexible reinforcement threshold. In the baseline IRL-SG, an initial action

that leads to a positive payoff is reinforced. Here we add a parameter τ to relax this,
so that experience is updated according to

ei(s) = λ · ai(s− 1) · (Vi(s− 1)− τ) + ·ei(s− 1).

In other words, initial round actions are reinforced with respect to the difference with
the threshold τ and not 0.25

The IRL-SG and AllD. This model, which is inspired by the Dal Bó and
Fréchette (2018) finding that a non-trivial fraction of experimental participants plays
D in almost every period, adds a type that plays AllD with a fixed error ε. This
increases the number of parameters to 8.

The IRL-SG with flexible share AllD. Similar to the previous model, but the
share of AllD is a function of ∆RD instead of being fixed, increasing the number of
parameters to 9.

Learning with flexible memory-1. In the next model, we allow these memory-1
behaviors to depend on ∆RD. In this case we have

σh = 1
1 + exp(−(αh + βh ·∆RD))

In total this model has 11 parameters.
25We considered several other variations where the threshold depended on for example the expected

length of the supergame or ∆RD; none of these did better than this simple threshold model.
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C Results

Table 11: Out-of-sample prediction loss (MSE) for per-session average cooperation

Model Avg C MSE S.E. Improvement
Constant 0.0517 (0.0040) -
OLS on (δ, g, l) 0.0196 (0.0024) 62.1%
OLS on ∆RD 0.0189 (0.0020) 63.4%
OLS 0.0153 (0.0017) 70.4%
SVR 0.0149 (0.0016) 71.2%
GBT 0.0147 (0.0016) 71.5%
Lasso 0.0143 (0.0016) 72.3%
Pure strategy belief learning w/o trembles 0.0229 (0.0025) 55.7%
Pure strategy belief learning w/ trembles 0.0191 (0.0020) 63.0%
Pure strategy reinf. learning w/ trembles 0.0175 (0.0020) 66.1%
IRL-SG and AllD 0.0143 (0.0015) 72.3%
IRL-SG with recency 0.0143 (0.0016) 72.3%
IRL-SG with flexible threshold 0.0141 (0.0015) 72.7%
Learning at all memory-1, two rates 0.0140 (0.0016) 72.9%
Learning with flexible memory-1 0.0140 (0.0016) 72.9%
Learning with memory-1 0.0140 (0.0016) 72.9%
IRL-SG with flexible AllD 0.0139 (0.0015) 73.1%
Learning at all memory-1 0.0139 (0.0016) 73.1%
IRL-SG 0.0138 (0.0015) 73.3%
IRL-SG, two types 0.0136 (0.0015) 73.7%
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Table 12: Out-of-sample prediction loss (MSE) for the time path of cooperation

Model Time-path MSE S.E. Improvement
Constant 0.0775 (0.0050) -
OLS on (δ, g, l) 0.0403 (0.0023) 48.0%
OLS on ∆RD 0.0398 (0.0025) 48.6%
OLS 0.0324 (0.0019) 58.2%
Lasso 0.0323 (0.0019) 58.3%
SVR 0.03223 (0.0020) 58.3%
GBT 0.0316 (0.0020) 59.2%
Pure strategy belief learning w/o trembles 0.0435 (0.0030) 43.9%
Pure strategy reinf. learning w/ trembles 0.0394 (0.0026) 49.1%
Pure strategy belief learning w/ trembles 0.0378 (0.0025) 51.2%
Learning at all memory-1 two rates 0.0322 (0.0021) 58.4%
IRL-SG with recency 0.0319 (0.0020) 58.8%
Learning at all memory-1 0.0317 (0.0022) 59.1%
IRL-SG with threshold 0.0313 (0.0020) 59.6%
Learning with flexible memory-1 0.0312 (0.0020) 59.7%
IRL-SG with flexible AllD 0.0311 (0.0021) 59.9%
IRL-SG and AllD 0.0311 (0.0020) 59.9%
Learning with memory-1 0.0310 (0.0021) 60.0%
IRL-SG 0.0309 (0.0020) 60.1%
IRL-SG, two types 0.0302 (0.0019) 61.0%

Model Avg C MSE S.E. Relative Improvement
Constant 0.0885 (0.0057) -
GBT 0.0454 (0.0039) 48.7%
OLS on (δ, g, l) 0.0344 (0.0028) 61.1%
Lasso 0.0267 (0.0032) 69.8%
OLS on ∆RD 0.0255 (0.0028) 71.2%
SVR 0.0235 (0.0027) 73.4%
IRL-SG 0.0177 (0.0019) 80.0%

Table 13: Across-treatment out-of-sample prediction MSE for average cooperation
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Model Avg C MSE S.E.
Constant 0.0695 (0.0055)
Lasso 0.0284 (0.0030)
SVR 0.0282 (0.0029)

OLS on ∆RD 0.0281 (0.0032)
GBT 0.0254 (0.0027)

IRL-SG 0.0220 (0.0026)

Table 14: Prediction loss (MSE) estimating on 1st half and evaluating on 2nd half

D Game parameters and learning
Our learning model assumes that game parameters and experience influence initial
round cooperation through the sum α + β · ∆RD + ei(s). We can thus interpret
α + β ·∆RD as the direct effect of the game parameters and ei(s) as the direct effect
of learning. We here try to answer how much of the behavior is directly driven by
learning and how much is driven by the game parameters, according to our learning
model. Since these two values enter the expression in the same way, they are directly
comparable.

We consider the last supergame of each experimental session. We consider the
actual data and a simulated data set with 16 participants in each session. When we
consider the actual data for an individual, we look at the initial round actions they
took and their observed realized, and calculate the corresponding value for ei(s) in
the last supergame. For the simulated data, we instead simulate the whole sequence
of play, and use the simulated values to calculate ei(s).

To get a numerical estimate of the relative importance we can look at how much of
the variation in predicted initial round cooperation is driven by the two effects. The
total average variance in initial round cooperation is given by

Var(p|e,∆RD) =
∑
i∈I

(
1

1− exp (−(α + β∆RD + ei(s))
− p

)2

/|I|

where I is the set of all individuals, and p is the average predicted initial round
cooperation. We can compare this to the variation in predicted cooperation from the
direct learning effect and the direct game parameter effect respectively.

Var(p|∆RD) =
∑
i∈I

(
1

1− exp (−(α + β∆RD)) − p(∆
RD)

)2

/|I|

Var(p|e) =
∑
i∈I

(
1

1− exp (−ei(s))
− p(e)

)2

/|I|.
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To calculate the relative importance of ∆RD we compare the incremental variance
introduced by ∆RD to the fraction of the variance introduced by ei(s), averaged over
which term we add first, and dived by the total variance

Relative Importance(∆RD) =
Var(p|∆RD) +

(
Var(p|e,∆RD)− Var(p|e)

)
2 /Var(p|e,∆RD)

Relative Importance(e) =
Var(p|e) +

(
Var(p|e,∆RD)− Var(p|∆RD)

)
2 /Var(p|e,∆RD).

This is the relative Shapley value of the two effects.26 It can be calculated on
either the individual or treatment level, where the probabilities pi(s) are first averaged
for each session.

Data Var(p|e,∆RD) Var(p|e) Var(p|∆RD) Rel Imp ei(s) Rel Imp ∆RD

Simulated individual 0.195 0.188 0.006 96.8% 3.2%
Actual individual 0.185 0.180 0.005 97.2% 2.8%
Simulated treatment 0.059 0.052 0.005 89.5% 10.5%
Actual treatment 0.055 0.046 0.004 87.7% 12.3%

Table 15: Relative importance measures

The table shows that in our model experience drives most of the variation initial
round cooperation: In both the simulated and actual data, ei(s) is responsible for
roughly 97% of the variation in predicted individual behavior, and roughly 88% of the
variation in predicted initial round cooperation between treatments.

E Pairwise tests
Here we consider paired differences between the IRL-SG and the different alternatives
considered. With the 10 different 10-fold cross validation splits, each session is
predicted 10 times. This way we capture the randomness that comes from having a
particular assignment to different folds.

Since the same 10 folds are used for all the models, we can bootstrap from these
1610 differences to produce more reliable estimates of the differences between models.
The tables below show bootstrapped standard errors and bootstrapped 95% confidence
intervals for the paired differences between IRL-SG and alternatives.

Table 16 shows that learning with semi-grim is significantly better than OLS on
∆RD and all pure strategy learning models. Furthermore, we see that the differences

26(Kruskal, 1987) and Mishra, 2016 use the Shapley value to analyze regressions, (Lipovetsky,
2006) uses them for logistic regressions, and (Lundberg and Lee, 2017; Molnar, 2019) for general
machine learning algorithms.

37



for the generalizations are in general not significant and neither are the differences
with the ML predictions.

Table 18 shows that the picture is similar for the time-path prediction problem.

Model Difference S.E. C.I.
OLS on ∆RD -0.005< (0.0014) [-0.0079, -0.0023]
SVR -0.00010 (0.0010) [-0.0034, 0.0004]
GBT -0.0008 (0.0012) [-0.0032, 0.0014]
Lasso -0.0005 (0.0009) [-0.0022, 0.0012]
Pure strategy belief learning w/o trembles -0.0091 (0.0021) [-0.0132, -0.0051]
Pure strategy belief learning w/ trembles -0.0053 (0.0016) [-0.0086, -0.0022]
Pure strategy reinf. learning w/ trembles -0.0036 (0.0014) [-0.0065, -0.0009]
IRL-SG and AllD -0.0005 (0.0005) [-0.0015, 0.0005]
IRL-SG with recency -0.0005 (0.0005) [-0.0015, 0.0006]
IRL-SG with threshold -0.0003 (0.0003) [-0.0010, 0.0004]
Learning at all memory-1, two rates -0.0003 (0.0006) [-0.0015, 0.0010]
Learning with flexible memory-1 -0.0002 (0.0006) [-0.0013, 0.0009]
Learning with memory-1 -0.0001 (0.0004) [-0.0008, 0.0006]
IRL-SG with flexible AllD -0.0001 (0.0004) [-0.0008, 0.0007]
Learning at all memory-1 -0.0001 (0.0006) [-0.0013, 0.0011]
IRL-SG, two types 0.0002 (0.0005) [-0.0008, 0.0012]

Table 16: Paired differences and 95% confidence intervals with the IRL-SG for the
average cooperation prediction task; negative values indicate that the IRL-SG has
lower MSE.

Model Difference S.E. C.I.
GBT -0.0277 (0.0042) [-0.0361, -0.0196]
OLS on (δ, g, l) -0.0167 (0.0033) [-0.0232, -0.0103]
Lasso -0.0090 (0.0037) [-0.0164, -0.0019]
OLS on ∆RD -0.0078 (0.0032) [-0.0143, -0.0016]
SVR -0.0059 (0.0032) [-0.0122, 0.0003]

Table 17: Paired differences and 95% confidence intervals with the IRL-SG for the
across-treatment average cooperation prediction task; negative values indicate that
the IRL-SG has lower MSE.
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Model Difference S.E. C.I.
OLS on ∆RD -0.0089 (0.002) [-0.0130, -0.0049]
Lasso -0.0014 (0.0012) [-0.0038, 0.0010]
SVR -0.0014 (0.0012) [-0.0038, 0.0011]
GBT -0.0007 (0.0013) [-0.0033, 0.0019]
Pure strategy belief learning without trembles -0.0126 (0.0023) [-0.0174, -0.0082]
Pure strategy reinf. learning with trembles -0.0085 (0.0018) [-0.0122, -0.0050]
Pure strategy belief learning with trembles -0.0069 (0.0021) [-0.0111, -0.0029]
Learning at all memory-1 two rates -0.0013 (0.0008) [-0.0029, 0.0003]
IRL-SG with recency -0.0010 (0.0007) [-0.0025, 0.0005]
Learning at all memory-1 -0.0008 (0.0008) [-0.0024, 0.0008]
IRL-SG with threshold -0.0004 (0.0005) [-0.0013, 0.0006]
Learning with flexible memory-1 -0.0003 (0.0007) [-0.0018, 0.0011]
IRL-SG with flexible AllD -0.0002 (0.0005) [-0.0013, 0.0008]
Learning with memory-1 -0.0001 (0.0004) [-0.0010, 0.0007]
IRL-SG and AllD -0.0002 (0.0006) [-0.0013, 0.0009]
IRL-SG, two types 0.0007 (0.0007) [-0.0007, 0.0021]

Table 18: Paired differences and 95% confidence intervals with the IRL-SG for the
time-path prediction task; negative values indicate that the IRL-SG has lower MSE

Table 19 shows that the IRL-SG is significantly better than the model-free pre-
diction algorithms at extrapolating from short to long sessions for all models but the
GBT, which is narrowly insignificant.

Model Difference S.E. C.I.
Constant -0.0475 (0.0054) [-0.0583, -0.0371]
Lasso -0.0064 (0.0028) [-0.0121, -0.0010]
SVR -0.0061 (0.0022) [-0.0114, -0.0011]
OLS on ∆RD -0.0061 (0.0022) [-0.0106, -0.0018]
GBT -0.0034 (0.0021) [-0.0076, 0.0007]

Table 19: Paired differences and 95% confidence intervals with the IRL-SG when
estimating on 1st half and evaluating on 2nd half; negative values indicate that the
IRL-SG has lower MSE
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